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Abstract-A new boundary element method is developed for two-dimensional quasistatic thermo­
elasticity. This time domain formulation involves only surface quantities. Consequently, volume
discretization is completely eliminated and the method becomes a viable alternative to the usual
finite element approaches. After presenting a brief overview of the governing equations. boundary
integral equations for coupled quasistatic thermoelasticity are derived by starting with eltisting
fundamental solutions along with an appropriate reciprocal theorem. Details of a general purpose
numerical implementation are then discussed. Ne~t. boundary element methods for the two more
practical theories. uncoupled quasistatic and steady-state thermoelasticity. are developed directly
from limiting forms of the coupled formulation. Several numerical eltamples are provided to
illustrate the validity and attractiveness of the boundary element approach for this entire class of
problems.

INTRODUCTION

In recent years, the boundary element method (OEM) has been extended to the analysis of
a wide range of engineering problems. For many of these applications. the BEM is shown
to provide an attractive alternative to the more popular finite element method, particularly
when the formulation can be written exclusively in terms of boundary quantities. BEM,
then. permits a reduction in the dimensionality of the problem. Thus, in a two-dimensional
boundary element analysis, discretization is only needed along the bounding curve.

The present effort addresses planar problems in coupled quasistatic thermoelasticity
(CQT), and details, for the first time, a boundary-only time domain BEM formulation and
implementation. The more familiar uncoupled theories are shown to be just special cases
of the coupled theory, and are solved within the same framework. For the uncoupled
quasistatic case, this again represents a new development, while under steady-state con­
ditions the well-established formulation of Rizzo and Shippy (1979) is recovered. Since
considerable attention has focused on the thermoelastic problem, a brief review of the
relevant BEM literature follows. Some references relating to poroelasticity are cited as well,
because in the fully coupled case the governing differential equations for both theories have
an identical form.

The early BEM work. carried out by Rizzo and Shippy (1977) and Cruse el aJ. (1977),
pertained to steady-state thermoelasticity. The approach consisted of an initial phase in
which a boundary element analysis of steady-state heat conduction was employed to
determine the surface temperature and flux distribution. In the second phase, the resulting
temperatures were applied as body forces in an elastostatic BEM to obtain deformation
and stress. General properties of the steady-state temperature field were exploited to reduce
the thermal body force volume integral to surface integrals involving the known boundary
temperatures and flux. Thus, the entire two step process required only surface discretization.

In the quasistatic realm. Banerjee and Butterfield (1981) presented a staggered pro­
cedure for solving the coupled equations. The algorithm requires the solutions of the
transient pore fluid (or heat) flow equation followed by an elastic analysis including body
forces at each time step. Unfortunately, this is not a boundary-only formulation, and
complete volume discretization is required. Cheng and Liggett (1984), on the other hand,
investigated two-dimensional poroelasticity via a formulation in the Laplace transform
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domain. While this is a boundary-only approach, the procedure is not, in general, satis­
factory. The transfonn domain fonnulation is sensitive to the selection of values of the
transfonn parameter, requires a numerical inversion of the transform, and is limited to
strictly linear problems.

Returning to thennoelasticity. Tanaka and Tanaka (1981) presented a reciprocal
theorem and the corresponding boundary element fonnulation for the time-domain coupled
problem. However, kernel functions are not discussed and no numerical results are included.
In fact. more recently. Tanaka et al. (1984) choose instead to implement the volume-based
thennal body force approach of Banerjee and Butterfield. In a series of papers. Sladek and
Sladek (l983. 1984a.b) presented a collection of fundamental solutions. in both Laplace
transform and time domains. under the classifications of coupled, uncoupled, transient.
and quasistatic thennoelasticity. Boundary integral equations were also included although
in several instances these were written inappropriately in terms ofdisplacement and traction
rates. Kernel singularities were not discussed and a numerical implementation was not
attempted. More recently. Chaudouet (1987) again resorts to the volume-based approach,
while Masinda (1984) and Sh.lrp and Crouch (1986) have directed efforts toward converting
the thermal body force volume integral into a surface integral. Masinda, working in three
dimensions. presents some formulations. but stops short before attempting an implemen­
tation. On the other hand. Sharp and Crouch develop an approach for two-dimensional
quasistatic thermoelasticity using time-dependent Green's functions. However. the authors
then introduce volume integrals in their time marching algorithm. This, unfortunately.
undermines most of the advantages of the HEM.

In the following. boundary clement formulations arc developed for coupled quasistatic
thermoelasticity (CQT). uncoupled quasistatic thermoelasticity (UQT). and steady-state
thermoelastieity (SST). All three involve only boundary quantities, and, thus, discretization
or the interior of the body is not required. These formulations have been implemented in
GP-BEST. a large-scale boundary element computer program. As a result, quite general
thermoelastic problems with arbitrary multi-region geometry and time-dependent boundary
conditions can be solved. Details of the implementation arc presented. as are several
numerical examples to demonstrate the validity of the method.

COUPLED QUASISTATIC THEORY

GOI't'rning equations
Since a complete derivation of the thermoelastic theory can be found in the textbooks

by Holey and Weiner (1960) and Nowacki (1986). only a few of the key assumptions will
be mentioned before presenting the governing differential equations under plane strain
conditions. In particular, the classical theory assumes infinitesimal deformations and linear
isotropic materials. Thus, the linearized strain-displacement relationship

(1)

is employed. along with constitutive laws of the form

'I, = -kU.,

where

u, displacement vector
Li' strain tensor
a" stress tensor
o present temperature
00 temperature of a zero stress reference state
'I, heat flux vector
).,11 Lame's isothennal elastic constants

(2)

(3)
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cc coefficient of thermal expansion
k thermal conductivity
{);j Kronecker's delta.

Then, application of the laws ofconservation of momentum and energy lead, in the absence
of inertia, to the following set of equations for plane strain:

(A +,u)uj.;j+ ,uuj • jj - (3A +2,u)ccO,; + j; =°
kO.jj-pc.(J-(3A+2,u)ccOouj.j+rjJ = 0,

(4a)

(4b)

in which p is the mass density, c. is the specific heat at constant deformation, while j;
and rjJ are the body forces and sources, respectively, and dots represent differentiation
with respect to time. The theory portrayed by (4) is formally named Coupled Quasistatic
Thermoelasticity (CQT). Notice, in particular, the appearance of displacement and tem­
perature in both equations. Thus, in CQT not only do changes in temperature cause de­
formation, but also deformation produces temperature variations. In general, the set of
equations (4) must be solved simultaneously. However, from an engineering viewpoint,
it has been determined by a number of researchers (e.g. Boley and Weiner, 1960; Day,
1982) that the term involving displacement in (4b) is negligible, thus uncoupling the momen­
tum and energy balance equations. Dropping that term, equation (4b) can first be solved
independently for the temperature field. Subsequently, displacements arc determined
from (4a) with the known temperature distribution. This is. in fact. the accepted pro­
cedure for thermal stress analysis. For now, the general. fully coupled theory governed by
(4) will be retained.

To complete the formulation of a well-posed problem. boundary and initial conditions
must. of course, be specified. Formally. the boundary condition for all points x on Scan
be written as

U; = U;(X, I)

or

I j = 1'.(X. I)

or

Ii = K(X,/)u;

and

0= 0(X,/)

or

q = Q(X. I)

or

q = H(X, 1)[0amb (X, I) - 0].

In addition, the initial conditions

U; = U;O(Z)

0= 0°(Z)

(Sa)

(5b)

(5c)

(6a)

(6b)

(6c)

(7a)

(7b)

are required for all points Z. in V at time zero which in the present analysis has been
assumed to be zero for simplicity. In the above, q is that heat flux normal to the surface S,
and I; is the traction vector defined by
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f, == (J"n,. (8)

Note that (Sc) and (6c) represent the familiar spring and convection boundary conditions.
respectively. in which

KC'( f) spring stiffness
H(X. t) film coefficient
0.mb (X. f) ambient fluid temperature.

The specification of (5), (6) and (7) along with (4) completely defines the CQT problem.

Fundamental solutions
An essential ingredient in the development of a boundary integral equation for plane

strain CQT is the appropriate time-dependent fundamental solutions. These required
Green's functions have been derived by Rice and Cleary (1976) and Rudnicki (1987) within
the context of the analogous theory of poroelasticity. Results are provided below after
translation into standard themlOclastie nomenclature.

First. consider the etfect of unit step forces acting in the j-direction at the points
(~I, ~> x) where the range on x) is from - -x: to + 'X). Thus, the applied force is a line
load. The response, at any point (x I'.\~' 0). is given by

where

and

I I [(v,v,) . ]
1I,(Y,f) = X·, . ',. ,ljdll>+(c'j,,)ii~("l> 1',

, n: I I(- v) _ r -

, r ( (I )l(Y') - ]0(.\. t) == 2n: k(). + 211) r g,(IJ} (',

{I = (.1;. + 2Jl)::C

r- = .1',.1',

r
'1 -- (el) I~

.{j I ('Il = I + C I { I - fi I (1/) ;

.(j~(1/) = - (3 -4\') In r+cdfiz(I/)}

_ fi,(I})
n ('1) = .-:,.\ 41

(I - 2\') OofI~ V, - v
--._- =

;., + "2,ll pc, , - v,

(9a)

(9b)

( 10)

(II a)

(lIb)

( lIe)

( lid)

(12a)

(l2b)

( 12c)

( 13)

(14a)
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The function £1 is the exponential integral defined by

1003

(14b)

(15)

Additionally, in (13) an isentropic Poisson ratio has been introduced for later use, where

).,
v, = .

2(A., + JL)
(16)

Next, the continuous line heat source Green's function is presented. In this case, the
resulting displacement and temperature fields are

(17a)

(17b)

whae

(ISa)

(1Sb)

It should be noted that, in the above, the evolution functions 9n(tT) carry the solution from
isentropic behavior at very short times to a final steady-state form at very long times.

Boundary integral formulation
A n.:ciprocal theorem generally provides a convenient starting point for a direct bound­

ary clement formulation. For the coupled problem at hand, it appears that Ionescu-Cazimir
(1964) was the first to explicitly state an appropriate reciprocal theorem, although certainly
the groundwork was laid earlier by Biot (1959). In the context of Coupled Quasistatic
Thermoelasticity, that theorem can be written, for a body of volume Vand surface S with
zero initial conditions, in the following time-domain form:

The superscripts (I) and (2) denote any two independent states existing in the body defined
by [U~", t}II, Olll, q(II,!II), tIt(l)] and [uI 2), tI 2), 0(2), q(2),ff), tIt(2)]. respectively. The symbol
• indicates a Riemann convolution integral, where, for example
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q'll * ()I:I = It qlll(X. t- rW :1(X. r) dr = j.' qlll (X, rW :1(X, t - r) dr. (20)
Q 0

It should be mentioned that the fonn of (19) above will lead to a boundary element
fonnulation with displacement, traction, temperature and flux as primary quantities. Other
researchers. notably Predeleanu (1981) and Shldek and Sl<ldek (1984b). have written equally
valid reciprocal statements that. unfortunately, lead to a much less desirable set of primary
variables including, for example, displacement and traction rates.

Let one of the states above, say state (2). be the. as yet, unknown solution to a given
boundary value problem defined by eqns (4)-(7). Then the remaining state may be chosen
arbitrarily. However. by initially selecting for state (I). the infinite region response to a unit
step continuous line force in thej-direction acting at ~ within Vand beginning at time zero.
the volume integrals in the reciprocal theorem can be made to vanish. That is, in equation
(19). at any point Z in V, let the applied forces and sources equal

and represent the response by

.nl)(Z,t) = J(Z-~)H(M"c,

",(I)(Z, t) = O.

!I~II(.r,t) = G,,(X-~,tk,

(}lIJ(X,tl = GII,(X-~,t)ct

t: II(X, t) = F,,(X -~, tk,

q(II(X.tl = 1:~,,(X-~,t)(',.

(21a)

(21b)

(2Ic)

(21d)

(2 Ie)

(21 f)

[n this notation, the subscript () in (21 d) and (21 f) does not vary. but instead takes the
value three for two-dimensional prohlems. Ohviously. equations (2te) and (2Id) arc the
same fundamental solutions that were presented in the previous sections. hut now with a
ditferent nomenclature. On the other hand, the functions F,,(X -~, t) and F",( X -~, t) can
he ohtained directly from G" and Go, through constitutive relationships. The superposed
dots in (2Id) and (21 f) represent time derivatives which have been introduced for notational
convenience. Ultimately, only the kernel functions G'J' Go" FIj and FII , will be required in
explicit form.

Next for simplicity, assume that no body forces or heat sources exist in the actual
houndary value prohlem. Then, the reciprocal relation, equation (19), can be rewritten

i[F,,(X -~. t)ej * u::I(X, t) + Fu,(X -~, tk, * VI 21(X, t)

- G,,(X-~. t)eJ * d2J (X, t) - GII,(X-~. t)e, * qI2J(X, t)l dS(X)

+ f[J(Z-~)J(t)()"e,*u~2)(Z,t)1 dV(Z) =0. (22)

After some simplification, this becomes

()lllI,(~, t) =f[G,,(X -~, t) * t,(X, t) +GII ,(}(-~' t) * q(X, t)

- Fi,(X -~, t) * lI,(.'I:", t) - FI,,(X-~' t - r) * V(X, t)l dS(X), (23)

in which the superscript (2) has now been dropped.
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Equation (23) is an integral equation for interior displacement that involves only
boundary quantities. Therefore. volume integration has. indeed. been eliminated through
the use of an infinite space Green's function.

Evidently. equation (23) is the desired expression for the displacement vector at any
interior point; however. a similar relationship is also desired for interior temperature. To
that end. return to the reciprocal theorem (19) and select. instead. for state (I) the infinite
space response to a unit pulse. continuous line heat source. acting at time zero and at point
ewithin V. That is. let

and consequently,

f} 1)(2. t) = 0

"'( 1)(2, t) = J(Z-e)J(t)

u}I)(X,t) = G,e(X-e,t)

O( I) (X. t) = Gtlo(X- e. t)

tll)(X. t) = FiO(X - e. t)

q( I) (X, f) = Foo(X - e. f).

(24a)

(24b)

(24c)

(24d)

(24e)

(24f)

Since this is the solution due to a unit pulse, the functions GiO and GtH1 are the time derivatives
of the unit step Green's functions presented previously. [n the end, it will be the kernel
functions Gm• GOIIo F,o and Ftm that will be of primary importance. rather than their time
derivatives.

Now. again. state (2) is chosen to be the actual problem. in which body forces and
heat sources arc absent. Thus. the reciprocal theorem reduces finally to the form

O(e. t) =f[GII/(X -~, t) • f,(X. I) +G,I/I(X -~. t) • q(X. f)

- F,I/(X -~. f) • u,(X. f) - FOI/(X - e. f) • (X. f)l dS(X). (25)

This. of course. is the desired statement for interior temperatures in terms of boundary
quantities.

Equations (23) and (25) can now be combined and rewritten in a more convenient
matrix notation as

{UJ~~' f)} = f ([Gi/ill/ JT . {f,(X. f)} _ [~ijFiO JT . {U,(x. f)}) dS(X). (26)
0(1,. f) .. Go/GI/O q(X. f) FoJoo O(X. f)

However. this can even be further compacted by generalizing the displacement and traction
vectors to include temperature and flux. respectively. as an additional component. Thus, in
two dimensions,

u, = {III U2 O}T

I, = {II f 2 q}T.

(27a)

(27b)

where the Greek index ex, and subsequently P. varies from one to three. Then (26) becomes
simply

u,(e. f) = f. [Gp• • tp(X. f) - F{J•• up(X, f)l dS(X). (28)

Equation (28) can be viewed as a generalized Somigliana's identity for coupled quasistatic
th~rmoelasticity. and. as such. is an exact statement for the interior displacements and

SAS 25:9-C
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(29)

temperatures at any point ~ within Vat any time t. However, to determine those interior
quantities, the entire history of boundary values of u, and t, must be known. Unfortunately.
in a well-posed boundary value problem only half of that information is given at each
instant of time. In order to obtain the missing information. and in essence, solve the problem
the point ~ must be moved to the boundary.

The process of writing (28) for a point on the boundary is not without complications.
due to the singular nature of the kernel functions as X -+ ~ and r -+ t. Considerable care
must be exercised in evaluating these singular integrals. As a result. a constant matrix cp, (~)

is introduced and terms associated with Fp, must be treated as Cauchy principal value
integrals. The new matrix Cp., is a function only of the local geometry of the boundary at ~.

and reduces to 0ff,!2 along a smooth surface.
With that in mind. the boundary integral formulation for CQT can be written

CpI(~)U/j(~.t) = i [Gp, *tp(X.t)-Fff, *up(X.t)] d5(X).

In principle. at each instant of time progressing from time zero. this equation can be written
at every point on the boundary. The collection of the resulting equations could then be
solvcd simultaneously. producing exact valucs for all the unknown boundary quantities. In
reality. ofcourse, discretization is needed to limit this process to a finite number ofequations
and unknowns.

Numerical implcmclIlalioll

The boundary integral equation (29) is an exact statement. No approximations have
been introduced other than those used to formulate the boundary value problem. However.
in order to apply (2lJ) for the solution of practical engineering problems. approximations
arc required in both time and space.

For the temporal discretization, the time interval from zero to I is divided into N equal
increments of duration tJ.1. Within each time increment. the primary field variables. III and
U/Io arc assumed constant. As a result. these quantities ean be brought outside of the time
integral. Since the integrand remaining is known in explicit form from the fundamental
solutions, the required temporal integration can be performed analytically. and written as

Combining this. and similar expressions for the fi'l integral, with (2lJ) produces

,\ (
c/I,(Ouli(~) = '~IJ [G;i:- ' '(X-~)/'/I(X)-Fii/'''(X-~)u'/I(X)] d5(X).

(30)

(31 )

The explicit form of the kernel functions. present in (31) arc detailed in the Appendix.
The singularities. inherent in these kernels. when the load point and field point coincide.

arc ofconsiderable importance. Series expansions of terms present in the evolution functions
can be used to deduce the level of singularities existing in the kernels. Table I summarizes
the results for plane strain CQT.

Tahlc I. Kernel singularities for plane strain CQT

Term Level of singularity Term

(f,', In r FI
I
,

G,:, non-singular F,:,
G1: 1 non-singular 1-"'

"
Gl~' In r Fr~

Level of singularity

non-singular

In r
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A number of observations should be emphasized. First, as would be expected, F~/J has
a stronger level ofsingularity than does the corresponding G~/J' since an additional derivative
is involved in obtaining F~/J from G~/J' Second, the coupling terms do not have as a high
degree of singularity as do the corresponding non-coupling terms. For example, compare
G,~ and G~J to Gi~' Third. all of the kernel functions for the first time step could actually
be rewritten as a sum of steady-state and transient components. That is.

G~p = "G./J +lrG~/J

F~/J = 55 F./J + Ir F~fJ'

Then, the singularity is completely contained in the steady-state portion. Furthermore, the
singularity in G,'; and Fi~ is precisely equal to that for elastostatics, while the GJe and FJH
singularities are identical to those for potential Row. This observation is critical in the
numerical integration of the F./I kernel to be discussed in the next subsection. However,
from a physical standpoint. this means simply that, at any time t, the nearer one moves
toward the load point. the closer the quasistatic response field corresponds with a steady­
state field. Eventually. when the sampling and load points coincide, the quasistatic and
steady-state responses are indistinguishable. As a final item, after careful examination of
the Appendix. it is evident that the steady-state components in the kernels G~/I and F~/I'

with" > I. vanish. In that case. all that remains is a transient portion that contains no
singularities. Thus. all singularities reside in the "G./1 and"F./I components of G~/I and F~/I'

respectively.
Next. spatial discretization is introduced in order to evaluate the surface integrals

appearing in (31). In the present implementation. both linear and quadratic boundary
elements are available for the description of the geometry, as well as the primary field
variables. Once the discretization is defined, the nodal generalized displacements and trac­
tions can be brought outside the surface integral. Then. the remaining shape function-kernel
products arc integrated numerically. Sophisticated. self-adaptive integration algorithms arc
employed to ensure accuracy and numerical elliciency (Banerjee et al., 1986; Ahmad and
Ba nerjee, 19XX).

With the discretization of the boundary integral equation, in both time and space,
complete, a system of algebraic equations can be developed to permit the approximate
solution of the original quasistatic problem. This is accomplished by systematically writing
the integral equations at each global boundary node. The ensuing nodal collocation process
produces a global set of equations of the form

N

L ([GN~I-n]{t"}_[FN+I-n]{un}) = {O},
n .... 1

(32)

in which {(n J and {It} arc nodal quantities with the superscript referencing the time step
index. It should be noted that during this collocation process, the indirect "rigid body"
technique (Cruse. 1974; Banerjee et al., 1986) is employed to determine the strongly
singular diagonal block of [FIJ.

In a well-posed problem, at any time t. the set ofglobal generalized nodal displacements
and tractions will contain exactly 3P unknown components,where P is the total number of
functional nodes. Then. as the final stage in the assembly process, equation (32) can be
rearranged to form (Banerjee et al., 1986) :

N I

[A 1 ]{XV } = [8 1]{yN} _ L ([GN+I-n]{tn} _ [FN"'I-n]{~})

n- I

(33)

in which {XV} and b"V
} represent the unknown and known nodal components, respectively.

In addition. the summation represents the effect of past events. Thus, all quantities on the
right-hand side of (33) are known at time step N.
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It should be emphasized that the entire boundary element method presented, in this
section, has involved surface quantities exclusively. A complete solution to the well-posed
linear quasistatic problem, with homogeneous properties, can be obtained in tenns of the
nodal boundary response vectors. without the need for any volume discretization.

In many practical situations, however, additional infonnation. such as the temperature
at interior locations or the stress at points on the boundary, is required. Once equation (33)
is solved, at any time step, the complete set of primary nodal quantities, :u"} and {tv:.
is known. Subsequently. the response at points within the body can be calculated in a
straightforward manner. For any point ~ in the interior. the generalized displacement can
be determined from (29) with Cd. = b/lx- However. when ~ is on the boundary, the strong
singularity in <SFp> prohibits accurate direct evaluation of the generalized displacement. and
an alternate approach is required. The apparent dilemma is easily resolved by recalling that
the variation of surface quantities is completely defined by the elemental shape functions.
Thus, for boundary points. the desired relationship is simply

(34)

where N",(O are the shape functions for the appropriate element and ~ are the intrinsic
coordinates. Obviously, from (34), neither integration nor the explicit contribution of past
events are needed to evaluate generalized boundary displacements.

Meanwhile, interior stresses can be evaluated from

"(X«() -~)N",(O dS(X«(»

-/l~", 1. D;i:: I "(.r(() -·~)N",(O (.L">'(X(O)]} (35)
s.,

in which

(36a)

(36b)

These are detailed in the Appendix.
Since strong kernel singularities appear when (35) is written for boundary points,

surface stress can, instead, be obtained from

(37a)

(37b)

(37c)

in which lIi~" is obviously the nodal temperatures. and

Equations (37). which .1re an extension of the technique developed by Cruse and VanBuren
(1971). fonn an independent set that can be solved numerically for IT;~(~) and 1I;:j(~)
completely in tenns of known nodal quantities /I~" and t~". without the need for kernel
integration or convolution. Notice. however, that shape function derivatives appear in
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(37c), thus constraining the representation of stress on the surface element to something
less than full quadratic variation.

The entire coupled quasistatic formulation has been implemented directly in GP-BEST,
a state-of-the-art, general purpose boundary element computer program. Consequently,
many additional features are available for the analysis of complex engineering problems,
including multi-region capability, symmetry options, and a high degree of flexibility for the
specification of boundary conditions.

UNCOUPLED QUASISTATIC THERMOELASTICITY

A simplification ofCQT recovers the more traditional thermoelastic theory by ignoring
the coupling in the energy equation. As discussed in Boley and Weiner (1960), the effect of
this coupling for typical engineering materials is negligible within a quasistatic framework.
Consequently, the resulting theory, labeled uncoupled quasistatic thermoelasticity or UQT,
has a wide range of applicability. In this case, the governing differential equations (4)
reduce to

(A. +11)lIj .;j + lLU•. ji - (3..1. +211)aO,; +/; = 0

kO.1i-PC.()+I/! = o.
(38a)

(38b)

The practical significance of this simplification is that the energy equation no longer involves
the deformation field. Thus, the temperature and flux can be obtained from (38b) as an
independent initial phase. Subsequently, the deformation response is determined by satisfy­
ing (JRa).

The kernel functions for UQT can be developed directly by considering limiting forms
or the CQT kernels. In particular, the e'i components reduce to their elastostatic counter­
parts, since unit forces in an uncoupled thermoelastic body produce a strictly instantaneous,
isothermal response. As a further consequence of the unit force behavior, the G,e terms
vanish. The remaining components of G arc unchangd in form. However, for UQT, the
dilrusivity, upon which the evolution functions arc based, becomes independent of the
elastic propaties, and reduces to its classical dctinition under conditions of transient heat
conduction. Thus,

k
c= -.

pc,
(39)

With the nature of the kernel functions for UQT in mind, the integral equations (31) can
be rewritten as

C/lll(~)I1;~(~) = f f. [GiJ~/'~n(X-~)I~(X)-Fo~+I-n(X-~)U;;(X)l dS(X)
n'" I ,I

(40a)

(40b)

While these appear to be a bit more cumbersome than (31), significant computational
advantages are present for UQT. Notice, in particular, that (40a) does not involve dis­
placements nor tractions, and therefore can be solved independently as a single degree of
freedom problem. Additionally, from (40b) it is obvious that the surface integrals involving
G,j and FIj do not require time convolutions. In fact, convolution is only needed for the
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temperature and flux terms. and for time steps beyond the first. all these kernels are non­
singular. The result is a highly efficient boundary element method for UQT which involves
only surface quantities.

STEADY·STATE THERMOELASTICITY

The second simplification of the general theory involves the removal of the time­
dependent nature of the problem. As a consequence. it is assumed that loads are applied
slowly. and that all of the resulting diffusive processes have been completed. In other words.
the thermoelastic body is presumed to ha\'e reached steady-state. The governing differential
equations now become

(). + /-l)Uj,ii +jlll;." - (3). +211)70., +f = 0

kll." +t/J = O.

(4Ia)

(41 b)

Obviously. this is again an uncoupled theory. since the energy equation does not involve
the deformation of the body, It is also a very practically significant theory. since the response
of many structures must be examined under long-time loading. as well as during transients.

The fundamental solutions associated with H I) arc simply the limiting forms of the
quasistatic solutions. For example. the response to a unit step force at ~ in thc j-dircl:tion
IS

O(X) = O.

while the response due to a unit step heat source at ~ can be written as

U, (X) = ..'- ( ...)!... ) [(Y,)( 1- '2 In r)]
8n: k(".+'2II) r

(42a)

(420)

(43a)

(43b)

The corresponding kernel functions developed from these Green's functions are, of course.
identical to those that were derived by Rizzo and Shippy (1979) by another method.

With time-dependency completely eliminated, there is no longer any need for wn­
volution integrals, Consequently, the boundary integral equations can be compal:tetl to the
form

CtlH(~)lIt/(~) =f [GtltI(X-~)ttl(X)-r~JII(X-~)II/}(.'()J dS(X) (44a)

c'J(~)Ui«() =f (G%j(X-';)t%(X)-F%I(X-~)lI%(X)j dS(X), (44b)

Once again. the thermal problem (44a) can be solved as an independent step, prior to the
thermal stress analysis governed by (44b).

Under steady-state conditions, a plane stress boundary element method can be
developed from the above by making the usual modifications of the thermoelastic constants.
Thus. a plane stress problem with material properties E. I' and IX is identical to the plane
strain problem involving E. vand eX, where
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_ E(I+2v)
E= ,

(I +v)-

v
v=-­

I+v

_ :%(I+v)
:%= .

I +2v
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(45a)

(45b)

(45c)

In the quasistatic case. it is. in general. not possible to fulfill the plane stress conditions and.
at the same time. exactly satisfy the governing equations of three-dimensional thermo­
elasticity [see Boley and Weiner (1960) for a discussion]. However, the transformations
noted in (45) can still be used to approximate plane stress solutions for thin bodies, although
some caution is warranted.

APPLICATIONS

All three formulations (CQT. UQT and SST) have been implemented in a general
purpose BEM system (GP-BEST). Because of extremely weak coupling. CQT and UQT
produce almost identical answers, therefore in the time-dependent examples presented
below, only UQT results are presented.

Circular disc
As a first example. transient thermal stresses in a circular disc are investigated. The

disc of radius "(I" initially rests at zero uniform temperature. The top and bottom surfaces
arc thermally insulated, and all boundaries are completely free of mechanical constraint.
Then. suddenly. at time zero, the temperature of the entire outer edge (i.e. r = (I) is elevated
to unity and. suhsequently. maintained at that level.

A GP-BEST boundary element model of the disc with unit radius is shown in Fig. I.
Only four quadratic elements arc employed, along with quarter symmetry. Ten interior
points are also included strictly to monitor response. In addition. the following non­
dimensionalized mutcriul properties ure arbitrarily selected for the plune stress unulysis :

E = 1.333 pc, = 1.0

v = 0.333 k = 1.0.

:%=0.75

X

X

X

X

X

X

X

X

X

X

• Col""ner node

o Mtdnode

X Intc~lo~ point

Fig. I. Circular disc. Boundary element model.
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--- Analy~tc:al

o GP-EEST (~"'a-0.e)

x GP-3EST (~"'a-0.S)

o GP-8EST (~"'a-0.8)

1011

l.001

I
I

.75 r
w

I
Cl:
=:l
I-
a:
Cl: .sew
~
W
I-

.25

.00 J
.00 .11') .21')

TIME

.3e

Fig. 2. Circular disc. GP-BEST results.

Results obtained under UQT for a time step of 0.005 arc compared, in Figs. 2 -4, to the
analytical solution presented in Timoshenko and Goodier (1970). Notice that temperatures.
as well as radial and tangential stresses arc accurately determined via the boundary element
analysis. In particular from rig. 4, even the tangential stress on the outer edge is l~tithfully

reprod uced.

Bonded ('Oflfler -hrass har
Consider next the thermal response of a composite formed by bonding a I() in. long,

0.5 in. deep brass bar continuously to the top of a copper bar of the same dimensions. The
assemblage, which is initially unstressed at zero temperature, is quickly heated by exposure
to 200'F air on the top (Y = 1,0) and bottom (Y = 0.0) surfaces. A convection coetlicient
of 250 in.-Ib./sec. in.! 'r is assumed for this process. The remaining surl~lces arc insulated.
Meanwhile, all outer surfaces of the composite bar arc considered traction free .

. 40 ,-----------------------------.,

(J'I
(J'I

l:it
I­
(J'I

.30

.20

.11')

--- Analy"lc:al
o GP-8EST (~"'a-0.0)

x GP-3EST (~"'a-0.S)

o GP-8EST (~"'a-0.8)

.00 L- ...l.- ~=__----___'_:=_------'

.00 .10 .21') .33 .40

TIME

Fig. 3. Circular disc. GP-BEST results.
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.50

.25

U1
U1

~ .00
~
U1

~
-.25....

~
w

~ -.50~

-.75

-1.00
.00 .10 .20

___ AnalytIcal

c GP-BEST C,./a-0.0)
)( GP-BEST C,./a-0.5)
o GP-BEST C,./a-0.8)
+ GP-BEST C,./a-I.0)

.30 .40

TIME

Fig. 4. Circular disc. GP·BEST results.

Figure 5 displays the boundary element model which necessarily includes separate
generic modeling regions (GMRs) for the copper and brass components. Each GMR
consists of 18 quadratic clements connecting 37 boundary nodes. Three interior points are
also positioned inside each region along the X =0.0 plane. Notice that symmetry is invoked
on that X = 0.0 plane, so that only an 8 in. length of the bar is modeled. (n uddition to the
boundary conditions mentioned above, the node at X = 0.0, Y =0.0 is fixed in the Y­
direction to prevent rigid body motion.

Standard room temperature properties are utilized for the two materials. Thus, for
copper

whereas for brass

E = 15.6 X 106 psi

v = 0.355

a. = 9.2 x 10- 6 in.fin. OF

pc. = 278 in.-Ib.fin.) of

k = 48 in.-Ibfsec. in. OF

E= 15.0x 106 psi

v = 0.364

PC. = 274 in.-Ib.fin.) OF

k = 12 in.-Ib.fsec. in. c'F.

a. = 11.8 x 10- 6 in.fin. OF

Y r

~~:-:-:---:.....-.....::--"a,;--:-:-:-::-:-:--:I
~ e • e • • .~'. e • e • e • e 1-.

x

• Co,.ne,. node
o Mldnode
x Inte,.lo,. Dolnt

Fig. S. Bonded copper-brass bar. Boundary element model.
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1.00.-----------------------:::==--~,--__:_-_:__

\

/

\

/
!

(
I

\

... ...

... ... ...

Br3SS

\ ,
\

'" coppe::, , ,
... ...

--- t-e.5sec
----- t-I.0sec
.................. t -2 .0sec

-----.-- t-4.0sec

/
/

/

/
/ , , , ,

.50 f----~-----~.,._---------'------+-____i

.75

. 25

c::

>-

.00 '- I..- L,- ----=:.~_~-----'--'--J

0. 50. 100. l50. 200.

TEMPERATURE (0 F)

Fig. 6. Bonded copper brass bar. GP-BEST results.

Based upon the material difl"usivities and the characteristic element size. a limc step of
0.050 s is selected for the GP-BEST analysis.

Naturally, due to differences in the thermal properties of the two materials. the tem­
perature profile is not symmetric ahout the bonded interfm:e. This is evident in the GP­
BEST results displayed in Fig. 6. where temperatures are plotted vs depth at four distinct
instants of time. Interestingly. although the copper component warms 1~lster as a whole, at
any given time the surf~lce temperatures are always somewhat higher in the brass.

The transient thermal analysis, conducted under UQT conditions and summarized in
Fig. 6, is completely independent of the thickness. Such is not the case for the displacement
and stress response. Conse4uently. in the present analysis. both plane strain (i.e. very
thick) and plane stress (i.e. very thin) approximations arc examined. Figure 7 depicts the
downward vertical deflection with time for a point (X = 8.0. Y = 0.0) at one end of the
bar. This bending is the result of the non-symmetric temperature profile mentioned above.
along with the mismatch in coellicients of thermal expansion. Longitudinal stresses, away

.0'10

x Plane Strain
0 Plane Stress

.030
c::.-
I-

~
W

.e2<l
~

~-Q
I

>-
.010

1.0

TIME (sec)

Fig. 7. Bonded copper-brass bar. GP-BEST results.
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10.0
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.a

$.-
X
x -ta.aI

~.....
Ul

-2a.a

-3a.a

II

•

+

+ 8~as$ CX-0.a. Y-t.al
o 8~as$ CX-0.a. Y-0.5l
X Coppe~ eX-0.a. Y-0.5l
C Coppe~ eX-0.a. Y-0.al

-4a.0 ~-----......JL..-------J,--------I.--------'.0 La 2.a 3.a 4.a

TIME (sec)

Fig. 8. Bonded copper-brass bar. Plane strain.

2a.a r----------------------------,

la.a

-3a.a

+ 8~as$ CX-0.a. Y-t.0l
o 8~&S$ CX-0.a. Y-0.5l
x Coppe~ eX-0.a. Y-0.5l
C Coppe~ eX-0.0. Y-0.al

-4a.a L-- ....L- -L. .....l. -'

.a 1.0 2.a 3.a 4.a

TIME (sec)

Fig. 9. Bonded copper-brass bar. Plane stress.

from the ends. are plotted in Figs 8 and 9 for plane slrain and plane stress, respectively. In
both cases, the transient thermal stresses are signiticantly higher than their steady-state
counterparts. Of course. the steady-state solution can be obtained either by continuing the
transient algorithm for a large number of time steps or by directly using the steady-state
kernels. The latter approach produces the results presented in Table 2. Notice that the

Table 2. Steady-state results for a bonded copper··brass bar

Tip deflection (in.)

Longitudinal stress (ksi)
Brass (X =o. O. Y = 1.0)
Brass (X = 0.0. Y = 0.5)
Copper (X = 0.0. Y = 0.5)
Copper (X = 0.0. Y = 0.0)

Plane strain

O.oJ5

+3.1
-6.3
+6.4
-3.2

Plane stress

0.025

+ 1.9
-3.9
+4.0
-Z.O
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o
Fig. 10. Turbine blade. Boundary element model.

plane stress formulation, as would be expected, consistently provides lower magnitudes for
deformation and stress for this thermally-driven problem.

Turbine blade
For the final application, the plane strain response ofan internally cooled turbine blade

is examined under startup thermal transients. The boundary element model of the blade is
illustrated in Fig. 10. In this problem, the two GMR approach is chosen solely to enhance
computational efficiency. This is accomplished by reducing the aspect ratio of individual
GMRs and by creating a block banded system matrix. The leading (left-hand) GMR
consists of 26 quadratic elements, whilc 24 elements arc used to model the trailing (right­
hand) region.

The blade is manufacturcd of stainless steel with the following thermomechanical
properties:

E = 29.0 X 106 psi

v = 0.30

IX = 9.6 x 10 6 in./in. "F

pc, = 368 in.-lb./in.J'F

k = 1.65 in.-lb./scc. in. 'F.

During operation a hot gas flows outside the blade, while a relatively cool gas passes
through the internal holes. The gas temperature transients are plotted in Fig. II for a typical
startup. Convection film coefficients are specified as follows:

2000.

--- Externa! Hot Gas
__ - - - Internal Coo I Gas

-----

TIME (sec)

Fig. 11. Turbine blade. Startup transient.
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0. "-:: -'--=- ~=__----_:_:'__::"-----~

.0 4.0 9.0 12.0 16.0

TIME (seC>

Fig. 12. Turbine blade. GP·BEST results.

Outer surface at leading edge h = 50 in.-Ib./sec. in.2 of

Remainder of outer surface h = 20 in.-Ib./sec. in. 2 OF

Inner cooling hole surfaces h = 10 in.-Ib./sec. in.2 of.

A time step of 0.2 s is employed for the UQT GP·BEST analysis.
The response at two points A. on the leading edge and, B, at midspan are displayed

in Figs 12 and 13. Notice that temperatures and stresses are consisently higher on the
leading edge, reaching peak values of approximately 1500°F and -60 ksi, respectively.
Also, as is evident from Fig. 13, significant stress reversals occur during this startup. As a
next step, these results from GP-BEST could be used as input for a fatigue analysis to assess
the durability of the design. In that regard, it should be emphasized that the stresses
presented for points A and B arc: surface stresses, calculated by satisfying the constitutive

75. r--------------------------.,

50.

N
N
t.::J....
(f)

25.

0.

-25.

-S0.

-75.
.0
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4.0 9.0

cPo
o 0

o 00
o 0

x
OX

Ox)(,

.j<

o Po tnt Fl
X Point B

12.0 16.0

TIME (sec)

Fig. 13. Turbine blade. GP·BEST results.
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laws. strain-displacement and equilibrium directly at the boundarY point. This can be
expected to produce much more accurate results than the standard practice utilized in finite
element approaches of extrapolating interior Gauss point stress values to the boundary.

COI"CLUSIO,\;S

In the present work. the boundary element method is extended to transient problems
of two-dimensional thermodasticity. Integral formulations are first developed for coupled
quasistatic thermoelasticity. and then specialized to the more practical theories of uncoupled
quasistatic and steady-state thermoelasticity. The resulting steady-state formulation reduces
to that given by Rizzo and Shippy (1979). However. the new time-domain quasistatic
formulations also require only surface discretization. and consequently, are viable alter­
natives to finite element analysis for this class of problems. In addition, steep thermal
gradients. which often occur near the surface. can be more readily captured. since with the
boundary element approach there are no shape functions to constrain the solution in the
direction normal to the surface. For example. the circular disc analysis indicates the level
of accuracy that is obtainable with the present BEM.

All three thermoelastic formulations are implemented. for both plane strain and plane
stress. in GP-BEST, a general purpose boundary element code. As a result. realistic thermo­
elastic engineering analysis can be performed. The three detailed examples highlight the
validity of the formulations and some potential applications.

A,·kno"kd,/,·"wnts-..The work dC'saiod in this paper was made possiole oy a grant from United Technologies
CorporatIon. The authors arc inJehll:d to Drs R. B. Wilson anJ E. Todd of Pratt and Whitney for their support
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APPENDIX: COUPLED QUASISTATIC THERMOELASTIC KERNELS

Two-dimensional (plane strain) kernels are provided. based upon continuous source and force fundamental
solutions. As a result. the following relationships must be used to determine the proper form of the functions
required in the boundary element discretization. That is.

G:~(X -~) = G>J/(X-~.nM) for n = I

G:p(X-~) =G,p(X-~.nL\t)-G,p(X-~,(n-I)M) forn> I,

with similar expressions holding for all the remaining kernels. In the spt:cification of these kernels below, the
arguments (X -~.t) are assumed.

In two dimensions. the indices

Additionally.

i.;.k,l

1%, II
(J

vary from I to 2

vary from I to 3

equals 2.

For the displacement kernel,

whereas, for the traction kernel.

X, coordinates of integratiun ruint

~, cllllrdin;ltes of field point

YI == XI-~'

r1. ;:= )'1.1",

r
'1 :: (~'Il'~ ~

(1-2v) (Jap: V,-v
c, = I., + 2Jl pc: = I=;~

k 1.+211
C = pc, 1.,+2;'

I I [(Y'Y')_ . - ]G'f = 81t Jl(I-v) 7" 9,('1)+(<>'1)9:('1)

G,o = in (k(I.~2Jl»)[ (~)91('1)]

G"l = in(k(I.~2Jl»)[ (~)9.('1)J

Goo = i~G}91('1)J
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9,(") "" 1+c, (I-li,(n)}

ih(,,) "" -(3-4v) In r+c,{liz(,,)l

_ Ii, (,,)
gJ(") ""-4/

_ Ii,("l E,(1
Z

)

9.(") "" _.y-' +2-

l,(tll '" ::+2cd1 +c··'·-2Ii,(,,)}

l:(f/) '" (1 -2v)-c,[I-Ii,(f/)}

1,(tll '" (1-2v)-c,(1-2c "'+h,("n

c .'i< h, ('I)
1,1") = . -. - '- -

21 21

Ii, ('I) c,' •l ("J =---- -----, 41 21

l.(,,) '" Ii, (til

lil(") E,(~)
l,(1/) "" --.:;" + --~.-- -

for the interior stress kernels.

where
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